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Abstract. The Darboux transformation operator method is applied to the investigation of coherent
states of transparent multisoliton potentials. An isometric correspondence between Hilbert spaces
of the states of a free particle and a particle moving in the soliton potential is established. It
is shown that the Darboux transformation operator being unbounded and closed cannot realize
an isometric mapping between Hilbert spaces. A quasispectral representation of transformation
operators in terms of continuous basis sets is obtained. Different families of coherent states of the
multisoliton potential are introduced. Measures that realize the resolution of the unity in terms of
the projectors on the coherent states vectors are calculated. These measures are defined by ordinary
smooth functions for the states obtained with the help of bounded transformation operators and by
generalized ones otherwise.

1. Introduction

The concept of coherent states (CS) is widely used in different fields of physics and mathematics
(see, for example, [1–3]). In particular, it plays an important role in the Berezin quantization
scheme [4], in the analysis of the growth of holomorphic functions [5], in a general theory
of phase space quasiprobability distributions [6] and in a quantum state engineering [7]. It
is necessary to note that at present no unified definition of such states exists in the literature
and different authors mean different things when speaking about them. Nevertheless, a careful
analysis (see, for example, [8]) shows that almost all definitions have some common points
that can be taken as a general definition of coherent states. Following Klauder [8], by coherent
states I mean such states that satisfy the following defining properties.

(a) CS are defined by vectorsψz(x, t) which belong to a Hilbert spaceH of the states of a
quantum system with the inner product〈·|·〉.

(b) The parameterz takes continuous values from a domainD of ann-dimensional complex
space.

(c) There exists a measureµ = µ(z, z̄) (a bar over a symbol indicates complex conjugation)
that provides the resolution of the unity in terms of the projectors on the vectorsψz∫

D
dµ |ψz〉〈ψz| = I. (1)

(d) CS should be temporally stable.
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By temporal stability I mean that the vectorsψz(x, t) remain coherent at all times (i.e. satisfy
properties (a)–(c) for any moment of time). To satisfy this condition I assume that the functions
ψz(x, t) are solutions of the Schrödinger equation

(i∂t − h0)ψz(x, t) = 0

whereh0 is the Hamiltonian of a given quantum system which in general can depend on time.
Operatorh0 is supposed to be symmetric on a suitable dense domain inH and to have a unique
self-adjoint extension to a wider domain. Equation (1) should be understood in a weak sense,
then it is equivalent to the relation∫

D
dµ 〈ψa|ψz〉〈ψz|ψb〉 = 〈ψa|ψb〉

which should hold for allψa,b from a dense domain inH .
It is necessary to note that the coherent states are not uniquely defined by the properties

(a)–(d). It will be shown further that there exist different systems of states satisfying these
conditions.

Transparent potentials have many remarkable properties. For instance, a quantum particle
propagates without reflection when the shape of its potential energy coincides with that of the
transparent potentials. Another remarkable property is that each level in the discrete spectrum
(if it exists) of such a potential occupies a preassigned position, which is controlled by values
of the parameters the potential depends on. The discrete spectrum levels may even be situated
in the middle of the continuous spectrum. In the latter case one hascompletely transparent
potentials[9]. A subclass of transparent potentials, namely, so-called soliton potentials, finds
a significant application in the soliton theory. There is a marvellous vast literature on this
subject. Here I cite only a monograph [10]. Because of their remarkable properties transparent
potentials would find an application in pseudopotential theories. Recently, they have been used
to describe relaxation processes in the Fermi liquid [11]. It is worthwhile to note that the shape-
invariant transparent potentials are well known in supersymmetric quantum mechanics [12].

CS for transparent potentials are very far from being explored. This fact may be explained
by the lack of any systematic method for their investigation. A clear algebraic structure related
to transparent potentials of a general form has not yet been established (to the knowledge of
the author) and therefore well known algebraic methods [1] are not suitable in this context.
Ladder operators of sufficiently simple form for the discrete spectrum eigenfunctions do not
exist for these potentials and therefore one cannot use the approach of [2] for this purpose. An
approach based on the uncertainty relation [13] is, in general, not consistent with property (c)
mentioned above and therefore should also be rejected.

Recently, it was demonstrated [14, 15] that in some cases the Darboux transformation
operators approach is a useful tool for investigation of CS. This method may be applied in
each case when two quantum systems are related to one other by a Darboux transformation
operator and when the system of CS (in some sense) is known for one of them.

The method of Darboux transformation operators is intimately related to the
supersymmetric quantum mechanics (for a review see [12]) where other approaches are known
for investigating the CS. For instance, in the case of shape-invariant or self-similar potentials
with the knownq-algebraic structure [16] one can immediately constructq-coherent states
[17]. Other possibilities are based on the use of annihilation operator [18] or ladder operator
[19] approaches.

Let us have an exactly solvable Hamiltonianh0 = −∂2
x +V0(x, t) for which the CSψz(x, t)

are known. Now one wants to obtain the CS for another Hamiltonianh1 = −∂2
x + V1(x, t)

related toh0 by the Darboux transformation operator that will be denoted byL. In general,
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it should be anon-stationaryDarboux transformation operator defined by the following
intertwining relation [20]:

L(i∂t − h0) = (i∂t − h1)L.

If such an operatorL is known, then solutions of the transformed Schrödinger equation
determined byh1 can be easily obtained by the action of the operatorL on the solutions
of the initial Schr̈odinger equation associated withh0. It is clear that the functionsϕz(x, t) =
Lψz(x, t) will satisfy all the properties of the CS enumerated above except perhaps for
property (c). One of the main goals of this paper is to prove that in the case of soliton
potentials, which is a more famous subclass of the transparent potentials, this property does
occur. I would like to mention that this approach has been successfully applied to study the CS
of anharmonic oscillator Hamiltonians with equidistant and quasiequidistant spectra [14] and
the CS of the non-stationary soliton potentials [21] that are related to the soliton solutions of the
Kadomtsev–Petviashvili equation. With the help of this approach a classical counterpart of the
Darboux transformation has been formulated and it has been shown that at the classical level
this transformation leads to a distortion of the phase space [22]. CS of the one-soliton potential
have also been investigated and their supercoherent structure has been revealed [15]. In this
paper a detailed analysis of CS for the multisoliton potentials is given. I want to stress that
the developed approach is also suitable for other transparent potentials related by the Darboux
transformation to these potentials for which the CS are known.

This paper is organized as follows. In section 2 I recall basic results on the free-particle
CS in a form appropriate for their application in the following sections. In section 3 the
Darboux transformation operator intertwining the free-particle Hamiltonian with the one for
the multisoliton potential is analysed as an operator acting in the Hilbert space of the states
of the free particle. It is shown that it cannot realize a mapping of Hilbert spaces since it is
not defined in the whole Hilbert space and cannot be extended to the whole Hilbert space.
Isomeric operators expressed in terms of continuous basis sets similar to these previously
proposed by Faddeev [23] and analysed by Pursey [24] for the case of purely discrete basis sets
are introduced. These operators realize a polar decomposition of the Darboux transformation
operators. A quasispectral representation of the Darboux transformation operator and its
inverse in terms of continuous basis sets is obtained. In section 4, different systems of CS
for the multisoliton potentials are introduced. It is established that the resolution of the unity
exists in every case. Explicit expressions for the measures that realize this equality are found.
In the conclusion some possible applications of the obtained results are outlined.

2. Free-particle coherent states

In this section I give a brief overview of the well known properties of the Hilbert space of the
states of the free particle (see [25] and references therein) and the corresponding CS [2] we
need for subsequent analysis.

Annihilationa and creationa+ operators

a = (i − t)∂x + ix/2 a+ = (i + t)∂x − ix/2

form the Heisenberg–Weil subalgebra of the six-dimensional Schrödinger algebra which
is a symmetry algebra of the Schrödinger equation with the zero potential. Solutions of
the free-particle Schrödinger equation which are square integrable over the full real axis
R = (−∞,+∞) with respect to the Lebesgue measure are the eigenstates of the symmetry
operatorK0 = aa+ + a+a, K0ψn(x, t) = (2n + 1)ψn(x, t). The explicit expression for these
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functions is as follows:

ψn(x, t) = (−i)n(n!2n
√

2π)−1/2(1 + it)−1/2 exp[−in arctant + y2(it − 1)/2]Hn(y)

y = x√
2 + 2t2

.

Operatorsa anda+ are the ladder operators for the basis functionsψn: aψn = √nψn−1,
a+ψn =

√
n + 1ψn+1 andaψ0 = 0.

Let us denote byL0 the lineal of the functionsψn, n = 0, 1, . . . which is the space of all
finite linear combinations of the functionsψn with complex coefficients. The operatorsa and
a+, being linear, are defined for all elements fromL0 andL0 is invariant with respect to the
action of these operators. Since the momentum operatorpx = −i∂x and the initial Hamiltonian
h0 are expressed in terms ofa anda+: px = −(a + a+)/2, h0 = p2

x , these operators are well
defined inL0 and map this space into itself.

The Hilbert space of the states of the free particle,H , is defined as a closure of the linealL0

with respect to the measure generated by the inner product〈ψa|ψb〉,ψa,b ∈ L0, which as usual
is defined with the help of the Lebesgue integral. The functionsψn form an orthonormal basis
in H , 〈ψn|ψk〉 = δnk. It is well known [26, 27] that the operatorspx andh0 initially defined
on L0 have unique self-adjoint extensions and, consequently, are essentially self-adjoint in
H . The spectrum ofh0 andpx is purely continuous. They have common eigenfunctions
ψp = ψp(x, t): pxψp = pψp, h0ψp = p2ψp, p ∈ R, which do not belong toH but
belong to a wider spaceH− of the linear functionals overH+, H+ ⊂ H ⊂ H− (the so-called
Gel’fand triplet). One can choose the Hilbert–Schmidt equipment of the spaceH by letting
H+ = K−1

0 H , sinceK−1
0 is a Hilbert–Schmidt operator. We refer the reader to [28–30] for

more details on rigged Hilbert spaces. The explicit expression for the functionsψp(x, t) is
well known:ψp(x, t) = (2π)−1/2 exp(−ipx − ip2t).

The functionsψp form an orthonormal and complete (in the sense of generalized functions)
basis inH , 〈ψp|ψq〉 = δ(p − q). The completeness condition is expressed symbolically in
terms of the projectors onto these functions∫

dp |ψp〉〈ψp| = I. (2)

I do not indicate the limits of integration along the whole real axis. This equality should be
understood in a weak sense. This means that it is equivalent to∫

dp 〈ψj |ψp〉〈ψp|ψk〉 = δjk j, k = 0, 1, . . .

whereψk, k = 0, 1, . . . are orthonormal basis functions in the spaceH .
The free-particle CS may be obtained by applying a displacement operator in the

Heisenberg–Weil group to the vacuum vectorψ0:

ψz(x, t) = exp(za+ − z̄a)ψ0(x, t) z ∈ C.
These vectors are also the eigenvectors of the annihilation operatoraψz = zψz. The vectors
ψz ∈ H belong to a wider set thanL0. Their Fourier decomposition in terms of the basisψn
has the form

ψz = 8
∑

n
anz

nψn

8 = 8(z, z̄) = exp(−zz̄/2)
an = (n!)−1/2 z ∈ C.

(3)



Coherent states for transparent potentials 595

The vectorsψz(x, t) satisfy all the properties enumerated in the introduction. In particular, the
measure dµ = dµ(z, z̄) used in relation (1) is well known: dµ = dx dy/π , z = x + iy and
the domain of integrationD is the whole complex planeC. In what follows I will not indicate
the domain of integration in the integrals over the measures. The integration will always be
extended over the whole complex plane. To conclude this section I write down the explicit
expression for the free-particle CS

ψz(x, t) = (2π)−1/4(1 + it)−1/2 exp

[
− 1

4(z + z̄)2 +
(x + 2iz)2(it − 1)

4(1 + t2)

]
.

I use the notationx as the spatial coordinate and as the real part of a complex number
z. I hope that it will not cause confusion since these quantities will never appear in the same
formula.

3. Darboux transformations and isometric operators

In this section the Darboux transformation operatorL is analysed as an operator defined in the
Hilbert spaceH . I would like to stress that this operator is unbounded and cannot be defined
over the whole spaceH . It has a domain of definition which is a subset ofH . Moreover, its
domain of values does not coincide withH . Therefore, this operator cannot realize mapping
between Hilbert spaces contrary to the published assertion [31].

To obtain anN -soliton potential we use the Darboux transformation operator approach
elaborated in detail in [10]. The action of this operator on a sufficiently smooth function is
defined by the formula

Lψ = W−1(u1, . . . , uN)W(u1, . . . , uN, ψ)

whereW stands for the usual symbol of a Wronskian. In our case the initial potentialV0

does not depend on time. Therefore the functionsuk = uk(x, t) which are solutions of
the initial Schr̈odinger equation, may be chosen as eigenfunctions of the initial Hamiltonian,
h0uk = αkuk, and in general, are not supposed to satisfy any boundary conditions. In this case
the transformation operatorL does not depend on time and transforms solutions of the initial
Schr̈odinger equation into solutions of the Schrödinger equation with the new time-independent
potential

V1 = V0 − 2∂2
x logW(u1, . . . , uN).

In this paper we need not use the time-dependent Darboux transformation which was proposed
by Matveev and Salle (see [10]) and advanced by Bagrov and Samsonov [32].

To obtain theN -soliton potential one should takeV0 = 0 and specify the transformation
functionsuk as follows [10]:

u2k−1 = cosh(a2k−1x + b2k−1)

u2k = sinh(a2kx + b2k)

h0uk = −a2
kuk k = 1, 2, . . . , N

a1 < a2 < · · · < aN.

The time-dependent phase factors are omitted from these functions since they do not affect
all the results. In general, the Wronsky determinant containsN ! summands. I would like to
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stress that in the special case of the soliton potentials this determinant may be substantially
simplified and presented as a sum of 2N−1 hyperbolic cosines [33]

W(u1, . . . , uN) = 21−N
2N−1∑

(ε1,...,εN )

ε2ε4 . . . εp

N∏
j>i

(εjaj − εiai) cosh

[ N∑
l=1

εl(alx + bl)

]
whereεi = ±1, the value of the subscriptp at εp should be taken equal toN for evenN and
toN − 1 for oddN , the summation runs over all ordered and non-identical sets(ε1, . . . , εN)

(the sets(ε1, . . . , εN) and(−ε1, . . . ,−εN) are declared to be identical).
It can be shown [10] that the potential thus obtained is regular and bounded from below.

This implies that the Hamiltonianh1 = −∂2
x + V1 is essentially self-adjoint inH . It has a

mixed spectrum. The position of the discrete spectrum levels is defined by the values of the
parametersak: Ek = −a2

k , and corresponding eigenfunctions have the form [34]

ϕk = NkW(k)(u1, . . . , uN)/W(u1, . . . , uN)

Nk =
(

1
2ak

N∏
j=1(j 6=k)

|a2
k − a2

j |
)1/2

h1ϕk = −a2
kϕk k = 1, . . . , N

whereW(k)(u1, . . . , uN) is the Wronskian of the functionsu1, . . . , uN except for the function
uk and the factorNk is introduced to ensure the normalization of the functionsϕk, 〈ϕk|ϕj 〉 = δkj ,
k, j = 1, . . . , N . The continuous spectrum corresponds to the semiaxisE > 0. Continuous
spectrum eigenfunctions,ϕp = ϕp(x, t), p ∈ R of the Hamiltonianh1 may be obtained with
the aid of the operatorL: ϕp = N−1

p Lψp, where the factorN−1
p > 0 defined by the relation

N2
p = (p2 + a2

1) . . . (p
2 + a2

N) is introduced to ensure the normalization of the functionsϕp:
〈ϕp|ϕq〉 = δ(p − q), h1ϕp = p2ϕp. The set{ϕj , j = 1, . . . , N; ϕp, p ∈ R} is complete in
H .

Since the operatorL is linear, the relationLψp = Npϕp defines the action of this operator
on everyψ of the form

ψ(x, t) =
∫
C(p)ψp(x, t)dp (4)

whereC(p) is a finite continuous function overR. The set of functions of the form (4) is a
linear space that I shall denote byL0p and it is dense inH . (More precisely, it is dense inH−
since these are functionals.) Hence, the action of the operatorL is defined for each element
fromL0p. The image of the spaceL0p, that I shall denote byL1p consists of the functions

ϕ(x, t) =
∫
C(p)Npϕp(x, t)dp.

The Darboux transformation operatorL together with its Laplace adjointL+ has
remarkable factorization properties [34, 35],

g0 = L+L = (h0 + a2
1) . . . (h0 + a2

N) (5)

g1 = LL+ = (h1 + a2
1) . . . (h1 + a2

N). (6)

The functionsψp are eigenfunctions ofg0, g0ψp = N2
pψp. This implies that the functions

ϕp are eigenfunctions of the operatorg1, g1ϕp = N2
pϕp. The discrete spectrum eigenfunctions

of the operatorh1, ϕk, k = 1, . . . , N belong to the kernel of the operatorg1, g1ϕk = 0,
k = 1, . . . , N . This means that the operatorg1 is non-negative inH . Therefore, consider
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the orthogonal decomposition of the spaceH : H = H0⊕H1 whereH0 is anN -dimensional
space with the basisϕk, k = 1, . . . , N . The functionsϕp, p ∈ R form a basis (in the sense of
generalized functions) inH1. In what follows I shall not consider the spaceH0 and restrict my
consideration to the spaceH1 only. As the operatorsh1 andg1 are restricted to this space, they
have a pure continuous spectrum and the operatorg1 is strictly positive. I use the same notations
for these operators as operators acting inH1. Taking into account the spectral decomposition
of these operators

h1 =
∫

dp p2|ϕp〉〈ϕp|

g1 =
∫

dpN2
p|ϕp〉〈ϕp|

one can specify their domains of definition. For the operatorh1 it consists of allϕ ∈ H1 for
which the integral

‖h1ϕ‖2 =
∫

dp p4|〈ϕ|ϕp〉|2

converges, while for the operatorg1 one should demand the convergence of the integral

‖g1ϕ‖2 =
∫

dpN4
p|〈ϕ|ϕp〉|2.

It is clear that the operatorg1 is defined onL1p and maps this space into itself. Using
this fact and the factorization property (6) one can define the action of the operatorL+ on
the functionsϕp, L+ϕp = N−1

p L+Lψp = Npψp, and extend this operator by linearity on the
whole spaceL1p.

It is not difficult to see that the following equality:

〈Lψp|ϕq〉 = 〈ψp|L+ϕq〉
holds for allψp ∈ L0p andϕq ∈ L1p. Nevertheless, this does not mean thatL+ is an operator
adjoint with respect to the inner product toL, for which the domain of definition isL0p. To
find such an operator one has to specify correctly its domain of definition. I shall not look
for this domain. Instead I shall give a closed extensionL̄ of the operatorL and then find its
adjointL̄+.

Once we know the basesψp andϕp inH andH1, respectively, we can consider isometric
operators

U =
∫

dp |ϕp〉〈ψp|

U−1 = U+ =
∫

dp |ψp〉〈ϕp|.

Similar operators have been introduced by Faddeev [23] and considered by Pursey [24] for
purely discrete bases. These operators are bounded and defined for all elements fromH and
H1, respectively.

Consider now the following operators:

L̄ =
∫

dpNp|ϕp〉〈ψp| (7)

L̄+ =
∫

dpNp|ψp〉〈ϕp|. (8)
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It is not difficult to specify their domains of definition. For this purpose I use the spectral
decomposition of the operatorg0 and its square root

g0 =
∫

dpN2
p|ψp〉〈ψp|

g
1/2
0 =

∫
dpNp|ψp〉〈ψp|.

(9)

It then follows that

‖L̄ψ‖2 = ‖g1/2
0 ψ‖2 =

∫
dpN2

p|〈ψ |ψp〉|2.

This means that the domain of definition ofL̄ coincides with that ofg1/2
0 and consists of all

ψ ∈ H such that the integral in the right-hand side of this equation converges. The domain of
definition ofL̄+ coincides with that of the operatorg1/2

1 . It is worthwhile to mention that these
domains may be described in terms of conditions imposed on functions that are comprised in
these domains (see, for example, [36]) sinceh0 andh1 are operators bounded from below and
essentially self-adjoint.

It is clear from formulae (7) and (8) that the operatorL̄+ is adjoint toL̄ with respect to
the inner product and the domains of definition ofL̄ and L̄+ are well specified. Moreover,
L̄++ = L̄. This implies [26, 27] that the operatorL̄ is closed. Formulae (7) and (8) give a
quasispectral representation of the closed operatorsL̄ andL̄+.

It follows from formulae (7) and (8) that̄Lψp = Lψp = Npϕp andL̄+ϕp = L+ϕp =
Npψp. This means that̄L is a closed extension of the operatorLandL̄+ is a similar extension of
the operatorL+ when the domainsL0p andL1p are taken as their initial domains of definition.

From the spectral decomposition of the operatorsg
1/2
0 (9) andg1/2

1 ,

g
1/2
1 =

∫
dpNp|ϕp〉〈ϕp|

one obtains the following representations forL̄ andL̄+:

L̄ = Ug1/2
0 = g1/2

1 U L̄+ = g1/2
0 U+ = U+g

1/2
1 .

Such representations are known as thepolar decompositionsor canonical representationsof
closed operators (see, for example, [27, 37]).

The action of the operatorU on the basisψn gives an orthonormal basis inH1: ζn = Uψn,
〈ζn|ζk〉 = δnk. The functionsϕn = g1/2

1 ζn = L̄ψn = Lψn, hence, form a basis inH1 equivalent
to an orthonormal (so-called Riesz basis, see, for example, [38]). The operatorU is non-local
and rather complicated. Therefore, there is no way in which simple explicit expressions can
be derived for the functionsζn. The functionsϕn(x, t) = Lψn(x, t) are much simpler but
they are not orthogonal to each other:〈ϕn|ϕk〉 = Snk. I shall denote byS the infinite matrix
with entriesSnk. The elements of this matrix can easily be expressed in terms of the elements
of another matrixS0(a) with the entriesS0

nk(a) = 〈ψn|h0 + a2|ψk〉. Using the factorization
property (5) one can write

Snk =
[
S0(a1)S

0(a2) . . . S
0(aN)

]
nk
.

Taking into account thath0 is expressed in terms of the ladder operatorsa anda+ for the
basis functionsψn, h0 = 1

4(a + a+)2, one derives the non-zero elements of the matrixS0(a):
S0
nn(a) = n/2 + 1

4 + a2, S0
nn+2(a) = 1

4

√
(n + 1)(n + 2). Hence, we see that the number of

non-zero elements in each row and column of the matrixS is finite.
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Consider now bounded operators

M =
∫

dpN−1
p |ϕp〉〈ψp|

M+ =
∫

dpN−1
p |ψp〉〈ϕp|

defined inH andH1, respectively. It is not difficult to see thatML̄+ is the unit operator in
H1 andM+L̄ is the unit operator inH . Using the spectral resolutions of the operatorsg

−1/2
0

andg−1/2
1 ,

g
−1/2
0 =

∫
dpN−1

p |ψp〉〈ψp|

g
−1/2
1 =

∫
dpN−1

p |ϕp〉〈ϕp|

one derives the polar decompositions of the operatorsM andM+:

M = Ug−1/2
0 = g−1/2

1 U

M+ = g−1/2
0 U+ = U+g

−1/2
1 .

It is easily seen that these operators factorize the operators inverse tog0 andg1: M+M = g−1
0 ,

MM+ = g−1
1 .

The functionsηn = g
−1/2
1 ζn = Mψn form another basis inH1 equivalent to an

orthonormal. This basis is biorthogonal toϕn, 〈ϕn|ηk〉 = δnk. From this relation and from the
factorization property for the operatorg−1

0 , follows the representation for the elementsS−1
nk of

the matrix inverse toS,

S−1
nk = 〈ηn|ηk〉 = 〈ψn|g−1

0 |ψk〉

=
∫

dpN−2
p 〈ψn|ψp〉〈ψp|ψk〉.

As a final remark of this section I would like to note the following. The spaceH1 can
be obtained as a closure of the linealL1 of all finite linear combinations of the functions
ϕn = Lψn with respect to the norm generated by the inner product which is a restriction of
the given inner product inH to the linealL1. The set of functions of the formϕ = L̄ψ when
ψ runs through the whole domain of definition of the operatorL̄ (i.e. the domainD√g0 of
definition of the operator

√
g0) cannot give the whole spaceH1. Nevertheless, if one defines

a new inner product inL1, 〈ϕa|ϕb〉1 ≡ 〈Lψa|Lψb〉 = 〈ψa|g0|ψb〉, ψa,b ∈ L0, ϕa,b ∈ L1 then
the closure ofL1 with respect to the norm generated by this inner product coincides with the
setϕ = L̄ψ , ψ ∈ D√g0. This space is embedded inH1.

4. Coherent states of soliton potentials

The operatorg0 is a symmetry operator for the free-particle Schrödinger equation. Therefore,
it commutes with the Schrödinger operator i∂t − h0 when applied to the solutions of the
Schr̈odinger equation. It follows that the operatorU = L̄g

−1/2
0 is an intertwining operator

for the Schr̈odinger operatorsU(i∂t − h0) = (i∂t − h1)U and therefore it is a transformation
operator. Hence, being applied to a solution of the initial Schrödinger equation (in our case this
is the free-particle Schrödinger equation) it gives a solution of the transformed equation (in our
case this is the Schrödinger equation with theN -soliton potential). The functionsζn = Uψn
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andζz = Uψz are then solutions of the Schrödinger equation with theN -soliton potential.
The Fourier decomposition of the functionζz in terms of the basis{ζn} has the same form as
that of the functionψz in terms of{ψn}

ζz = 8
∑
n

anζn.

The vectorsζz, z ∈ C satisfy all the conditions formulated for CS in the introduction
because of the isometric nature of the operatorU . The resolution of the unity (1) in the
spaceH1 in terms of the projectors onζz takes place with the same measure dµ = dx dy/π ,
z = x + iy. One of the deficiencies of these coherent states is that a simple explicit expression
for the functionsζz(x, t) does not exist. We may correct this deficiency by introducing new
coherent states. Let us act the symmetry operatorg

1/2
1 on the vectorsζz. As a result one obtains

other solutions of the Schrödinger equation with theN -soliton potential

ϕz = g1/2
1 ζz = L̄ψz = 8

∑
n
anϕn.

It is not difficult to see that the value〈ψz|g0|ψz〉 is finite. This means thatψz belongs to
the domain of definition of the operatorL̄ and the above equality has a meaning. Moreover,
these functions are sufficiently smooth and one can apply the differential operatorL on them
directly. Thus, one obtains a coordinate representation ofϕz. For instance, in the case of the
one-soliton potential this representation reads

ϕz(x, t) = − 1
2(2π)

−1/4(1 + it)−3/2[x + 2iz + 2a(1 + it) tanh(ax)]

× exp

[
− (x + 2iz)2

4 + 4it
− 1

4(z + z̄)2
]
. (10)

The parameterb is not important for the one-soliton potential and we setb = 0. We see that
these functions are much simpler thanζz and may be analysed without difficulty. For example,
it is easily seen that [15]|ϕz(x, t)|2 = |ϕz(−x,−t)|2. This property reflects the transparent
nature of the one-soliton potential.

Another system of states may be obtained with the help of the transformation operatorM.
Consider the vectors

ηz = g−1/2
1 ζz = Mψz = 8

∑
n
anηn.

The operatorM, being inverse toL, has an integral nature. For the case of the one-soliton
potential the integration may be carried out analytically [15]. This yields

ηz(x, t) = − 1
4i
√
π(2π)−1/4 sech(ax) exp

[− 1
4(z + z̄)2 + a2(1 + it)

]
×
[
exp(2iaz) erfc

(
a
√

1 + it +
x/2 + iz√

1 + it

)
− exp(−2iaz) erfc

(
a
√

1 + it − x/2 + iz√
1 + it

)]
(11)

where the parameterb is taken to be zero.
It is worthwhile to mention that all the statesψz(x, t),ϕz(x, t), ηz(x, t) andζz(x, t) cannot

represent non-spreading in time wavepackets. Nevertheless, one can interpret them as coherent
states since they satisfy all the properties of such states enumerated in the introduction. Now I
shall show that for the vectorsϕz andηz there exist measuresµϕ = µϕ(z, z̄) andµη = µη(z, z̄)
that realize the resolution of the unity inH1 in terms of the projectors on these vectors.
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First consider another continuous basis inH1: ηp = NpMψp, 〈ηp|ηq〉 = δ(p − q),
p, q ∈ R. Since{ϕp} and{ηp} are bases inH1, the resolutions of the unity of the type (1) in
terms of the vectorsηz andϕz are equivalent to the equations∫

dµη(z, z̄) 〈ηp|ηz〉〈ηz|ηq〉 = δ(p − q)∫
dµϕ(z, z̄) 〈ϕp|ϕz〉〈ϕz|ϕq〉 = δ(p − q).

Taking into account that the functionsψp are the eigenfunctions ofg0 andg−1
0 , g0ψp = N2

pψp,

g−1
0 ψp = N−2

p ψp, one arrives at equations for the measuresµη andµϕ

(NpNq)
−1
∫

dµη 〈ψp|ψz〉〈ψz|ψq〉 = δ(p − q) (12)

NpNq

∫
dµϕ 〈ψp|ψz〉〈ψz|ψq〉 = δ(p − q). (13)

Note that the integrals involved in these equations are time independent and hence can be
calculated att = 0. Therefore, in what follows I lett = 0 and look for the measures
independent of time.

The momentum representation of the CSψz is well known

〈ψp|ψz〉 = (2/π)1/48ψp(z)
ψp(z) = exp(−p2 + 2zp − z2/2) z = x + iy.

Let us look for the measureµη in the form dµη = ωη(x) dx dy, z = x + iy. After performing
the integration with respect toy in equation (12) one arrives at an equation forωη(x),

(2π)1/2
∫

dx ωη(x) Fp(x) = N2
p exp(2p2)

Fp(x) = exp(4px − 2x2).

The functionN2
p is known to be a polynomial inp. Then one concludes thatωη(x) is a

polynomial inx whose coefficients are uniquely defined by the coefficients of the polynomial
N2
p. For instance, for the one-soliton potential one can find

ωη(x) =
(
x2 + a2 − 1

4

)
/π.

This proves that the statesηz may be interpreted as CS.
We note that the statesηz are defined with the help of the bounded operatorg

−1/2
0 . This is

the reason why the measureµη is expressed in terms of ordinary (non-generalized) functions.
Another case takes place for the statesϕz which are defined by the semibounded operatorg

1/2
1 .

I shall now show that the measureµϕ is expressed in terms of generalized functions.
Let us look for the measureµϕ in the form dµϕ = dy dωϕ(x). The integration in

equation (13) with respect toy leads to an equation for the measure dωϕ(x),

(2π)1/2
∫

dωϕ(x) Fp(x) = N−2
p exp(2p2). (14)

First we note that|Fp(x + iy)| 6 exp(−dx2 + by2) where 26 d 6 b. This means that
Fp(x) belongs to a subspace of the spaceS

1/2
1/2 of entire functionsF such that|F(x + iy)| 6

exp(−dx2 +by2), 06 d 6 b [29]. We look forωϕ as a functional (i.e. a generalized function)

overS1/2
1/2. (We will see that really this is a functional over a subspace

◦
S

1/2
1/2 ⊂ S1/2

1/2.)
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As is known [29], positive-definite functionals (we look for just such a functional) over
S

1/2
1/2 are specified by their Fourier transforms. Letω̃ϕ be the Fourier transform of the measure

ωϕ(x). This means that an integration of a functionF(x) ∈ S1/2
1/2 with respect to the measure

ωϕ(x) should be replaced by the integration of the Fourier transformF̃ (t) of this function with
respect to the measurẽωϕ . In particular,∫

dωϕ(x) Fp(x) =
∫

dω̃ϕ(t) F̃p(t) (15)

whereF̃p(t) is the Fourier image of the functionFp(x) which in our case can easily be found

F̃p(t) =
√
π/2 exp(2p2 + ipt − t2/8).

As a result equation (14) yields an equation forω̃ϕ(t)

π

∫
dω̃ϕ(t) exp(−t2/8 + ipt) = N−2

p .

It is an easy exercise to show thatω̃ϕ(t) may be expressed in terms of elementary functions.
For this purpose we look for̃ωϕ(t) in the form dω̃ϕ(t) = ρϕ(t) dt and use the following
representation for the functionN−2

p :

N−2
p =

N∑
k=1

Ak

τ + a2
k

τ = p2

Ak =
[
(dN2

p/dτ)τ=−a2
k

]−1
.

(16)

After some algebra one obtains a formula forρϕ(t)

ρϕ(t) = (2π)−1
∑N

k=1

Ak

ak
exp(t2/8− ak|t |). (17)

Note that for the functionρϕ(t) of the form (17) there exist inS1/2
1/2 functionsF(p) such

that the integral in the right-hand side of equation (15) diverges. The convergence condition
for this integral imposes a restriction on the decrease of the integrand functionF(x) in the
left-hand side of equation (15) as|x| → ∞. This function should satisfy an inequality
|F(x)| > exp(−2x2−Ax)whereA is a non-negative constant for every functionF(x) ∈ S1/2

1/2.

I denote the set of functions satisfying this condition by
◦
S

1/2
1/2 (⊂ S

1/2
1/2) which obviously is a

linear space.
Thus, we have found the measureµϕ in terms of the generalized functionωϕ(x) over the

space
◦
S

1/2
1/2, dµϕ = dy dωϕ(x), z = x + iy which is defined by its Fourier transform̃ωϕ . The

integrals with respect to this measure should be calculated as follows:∫
dµϕ 〈ϕa|ϕz〉〈ϕz|ϕb〉 ≡

∫
dt ρ̃ϕ(t) F̃ab(t)

whereF̃ab(t) is the Fourier transform of the function

Fab(x) =
∫

dy 〈ϕa|ϕz〉〈ϕz|ϕb〉 z = x + iy.

To conclude I would like to comment on the calculation of the norms of the functionsηz
andϕz. The square of the norm ofηz may be calculated with the aid of formula (16) for the
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functionN−2
p and the factorization property of the operatorg−1

0 in terms of the operatorsM
andM+

〈ηz|ηz〉 = 〈ψz|g−1
0 |ψz〉 =

∫
dpN−2

p |〈ψz|ψp〉|2.

After some algebra one obtains

〈ηz|ηz〉 =
∑N

k=1
AkFk z = x + iy

Fk =
√

2π

ak
exp[2(a2

k − x2)] Re
[
exp(4iakx) erfc(ak

√
2 + i
√

2x)
]
.

Similarly, the square of the norm of the functionϕz coincides with the expectation value
of the operatorg0 in the stateψz. For instance, for the one-soliton potential one obtains
〈ϕz|ϕz〉 = 〈ψz|g0|ψz〉 = 1

4 + a2 + x2, z = x + iy.

5. Conclusion

A classical particle which is decayed by a potential well of an arbitrary shape moves without
reflection. For a quantum particle, in general, this is not the case. Nevertheless, there exists
a wide class of potentials called transparent potentials for which the scattering process of
the quantum particle comes about in some sense in a similar way to those of the classical
particle, i.e. without reflection. In my opinion this mysterious phenomenon has, up to now,
no appropriate explanation. From a practical point of view the answer to this question is
rather important. If at the quantum level we were able to force a signal to propagate without
reflection we could decrease the output of the emitted signal. All transparent potentials known
at present have a remarkable property. They are related to the zero potential (free particle)
by Darboux transformations. Up to recent times it was believed that such potentials have a
finite number of discrete spectrum levels. Nevertheless, a method based on an infinite chain
of Darboux transformations has been proposed recently [39], with the help of which one can
create transparent potentials with an infinite number of discrete spectrum levels. To better
understand the nature of transparent potentials we should investigate them in detail. Up to
now only scattering states have been available for an analysis of the properties of a quantum
particle moving in a soliton potential. This paper opens the door to a more detailed analysis
since we now have simple exact solutions of the corresponding Schrödinger equation which
are square integrable (see formulae (10) and (11)). These results might find applications in
signal analysis (see, e.g., [40]) and in quantum optics [3].

As is well known quantum theory gives a more detailed description of nature than the
classical theory. Therefore, a one-to-one correspondence between classical and quantum
systems does not exist. This, in particular, is expressed in the fact that the quantization
procedure is not unique (canonical quantization, geometric quantization, etc). In this respect
the following questions are of interest. What are common points (or differences) between
two classical systems for which quantum counterparts are related to each other by the
Darboux transformation? Whether the distinction between two classical systems for which a
quantization gives quantum systems interrelated by the Darboux transformation is essential?
In particular, what are the common points between the classical free particle and a particle
moving in a transparent potential? The CS approach make it possible to formulate clear steps in
the direction of obtaining an answer to these questions. It permits one to construct a classical
mechanics counterpart of a given quantum system and to analyse the properties of such a
system. This approach has been realized recently for the potential of the formx2 + gx−2
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[22]. It was established that at a classical level the Darboux transformation consists of a
distortion of the phase space of the classical system. Moreover, this distortion is consistent
with the transformation of the Hamilton function in such a way that the equations of motion
remain unchanged. Up to now no approach for the analysis of CS of transparent potentials has
been elaborated. In this paper I show that the Darboux transformation operator approach may
be used to investigate properties of a subclass of transparent potentials, namely, multisoliton
potentials. A next step would be the investigation of other types of transparent potentials and
the analysis of the classical counterpart of the quantum system that moves in such a potential.
We are planning to carry out these investigations in the near future.

The existence of the resolution of the unity (1) for the states (10) and (11) established in
this paper makes it possible to construct a holomorphic representation for the Hilbert space of
the states of a particle moving in a soliton potential and for operators acting in it. This gives
the possibility to use the well elaborated methods of analytic function theory (see, e.g., [41])
to analyse the properties of soliton potentials. In this approach a number of statements are
easier to prove and new properties may be established [42]. Another important consequence
of the existence of the resolution of the unity is the possibility to construct a so-called ‘phase-
space formulation of quantum mechanics’ (for a review see [43]) for the particle moving in
the soliton potential. Such a formulation is a basis for the reconstruction of a quantum state
from information obtained by a set of measurements performed on an ensemble of identically
prepared systems which is now an actual problem.
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