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Abstract. The Darboux transformation operator method is applied to the investigation of coherent
states of transparent multisoliton potentials. An isometric correspondence between Hilbert spaces
of the states of a free particle and a particle moving in the soliton potential is established. It

is shown that the Darboux transformation operator being unbounded and closed cannot realize
an isometric mapping between Hilbert spaces. A quasispectral representation of transformation
operators in terms of continuous basis sets is obtained. Different families of coherent states of the
multisoliton potential are introduced. Measures that realize the resolution of the unity in terms of
the projectors on the coherent states vectors are calculated. These measures are defined by ordinary
smooth functions for the states obtained with the help of bounded transformation operators and by
generalized ones otherwise.

1. Introduction

The concept of coherent states (CS) is widely used in different fields of physics and mathematics
(see, for example, [1-3]). In particular, it plays an important role in the Berezin quantization
scheme [4], in the analysis of the growth of holomorphic functions [5], in a general theory
of phase space quasiprobability distributions [6] and in a quantum state engineering [7]. It
is necessary to note that at present no unified definition of such states exists in the literature
and different authors mean different things when speaking about them. Nevertheless, a careful
analysis (see, for example, [8]) shows that almost all definitions have some common points
that can be taken as a general definition of coherent states. Following Klauder [8], by coherent
states | mean such states that satisfy the following defining properties.

(a) CS are defined by vectots (x, ) which belong to a Hilbert spacH of the states of a
quantum system with the inner prodygdt).

(b) The parameter takes continuous values from a domairof ann-dimensional complex
space.

(c) There exists a measute= u(z, 7) (a bar over a symbol indicates complex conjugation)
that provides the resolution of the unity in terms of the projectors on the vegtors

/ A [9) (| = L. (1)
D

(d) CS should be temporally stable.
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By temporal stability | mean that the vectafs(x, r) remain coherent at all times (i.e. satisfy
properties (a)—(c) for any moment of time). To satisfy this condition | assume that the functions
Y. (x, t) are solutions of the Scédinger equation

(10, — ho)yr-(x,1) = 0

whereh is the Hamiltonian of a given quantum system which in general can depend on time.
Operatong is supposed to be symmetric on a suitable dense domairaind to have a unique
self-adjoint extension to a wider domain. Equation (1) should be understood in a weak sense,
then it is equivalent to the relation

/Ddu (ol ) (W |¥n) = (ValVp)

which should hold for ally, , from a dense domain i

It is necessary to note that the coherent states are not uniquely defined by the properties
(a)—(d). It will be shown further that there exist different systems of states satisfying these
conditions.

Transparent potentials have many remarkable properties. For instance, a quantum particle
propagates without reflection when the shape of its potential energy coincides with that of the
transparent potentials. Another remarkable property is that each level in the discrete spectrum
(if it exists) of such a potential occupies a preassigned position, which is controlled by values
of the parameters the potential depends on. The discrete spectrum levels may even be situated
in the middle of the continuous spectrum. In the latter case onedrapletely transparent
potentialg[9]. A subclass of transparent potentials, namely, so-called soliton potentials, finds
a significant application in the soliton theory. There is a marvellous vast literature on this
subject. Here | cite only a monograph [10]. Because of their remarkable properties transparent
potentials would find an application in pseudopotential theories. Recently, they have been used
to describe relaxation processes in the Fermiliquid [11]. Itis worthwhile to note that the shape-
invariant transparent potentials are well known in supersymmetric quantum mechanics [12].

CSfor transparent potentials are very far from being explored. This fact may be explained
by the lack of any systematic method for their investigation. A clear algebraic structure related
to transparent potentials of a general form has not yet been established (to the knowledge of
the author) and therefore well known algebraic methods [1] are not suitable in this context.
Ladder operators of sufficiently simple form for the discrete spectrum eigenfunctions do not
exist for these potentials and therefore one cannot use the approach of [2] for this purpose. An
approach based on the uncertainty relation [13] is, in general, not consistent with property (c)
mentioned above and therefore should also be rejected.

Recently, it was demonstrated [14, 15] that in some cases the Darboux transformation
operators approach is a useful tool for investigation of CS. This method may be applied in
each case when two quantum systems are related to one other by a Darboux transformation
operator and when the system of CS (in some sense) is known for one of them.

The method of Darboux transformation operators is intimately related to the
supersymmetric quantum mechanics (for a review see [12]) where other approaches are known
for investigating the CS. For instance, in the case of shape-invariant or self-similar potentials
with the knowng-algebraic structure [16] one can immediately constgucbherent states
[17]. Other possibilities are based on the use of annihilation operator [18] or ladder operator
[19] approaches.

Let us have an exactly solvable Hamiltonian= —a§+V0(x, t) forwhichthe CSy, (x, 1)
are known. Now one wants to obtain the CS for another Hamiltohjaa: —a§ + Vi(x, t)
related toho by the Darboux transformation operator that will be denoted.byn general,
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it should be anon-stationaryDarboux transformation operator defined by the following
intertwining relation [20]:

L(id, — ho) = (19, — hy)L.

If such an operatod. is known, then solutions of the transformed Salinger equation
determined by, can be easily obtained by the action of the operdtan the solutions
of the initial Schdinger equation associated with. It is clear that the functiong, (x, 1) =
L, (x, t) will satisfy all the properties of the CS enumerated above except perhaps for
property (c). One of the main goals of this paper is to prove that in the case of soliton
potentials, which is a more famous subclass of the transparent potentials, this property does
occur. | would like to mention that this approach has been successfully applied to study the CS
of anharmonic oscillator Hamiltonians with equidistant and quasiequidistant spectra [14] and
the CS of the non-stationary soliton potentials [21] that are related to the soliton solutions of the
Kadomtsev—Petviashvili equation. With the help of this approach a classical counterpart of the
Darboux transformation has been formulated and it has been shown that at the classical level
this transformation leads to a distortion of the phase space [22]. CS of the one-soliton potential
have also been investigated and their supercoherent structure has been revealed [15]. In this
paper a detailed analysis of CS for the multisoliton potentials is given. | want to stress that
the developed approach is also suitable for other transparent potentials related by the Darboux
transformation to these potentials for which the CS are known.

This paper is organized as follows. In seant®d | recall basic results on the free-particle
CS in a form appropriate for their application in the following sections. In section 3 the
Darboux transformation operator intertwining the free-particle Hamiltonian with the one for
the multisoliton potential is analysed as an operator acting in the Hilbert space of the states
of the free particle. It is shown that it cannot realize a mapping of Hilbert spaces since it is
not defined in the whole Hilbert space and cannot be extended to the whole Hilbert space.
Isomeric operators expressed in terms of continuous basis sets similar to these previously
proposed by Faddeev [23] and analysed by Pursey [24] for the case of purely discrete basis sets
are introduced. These operators realize a polar decomposition of the Darboux transformation
operators. A quasispectral representation of the Darboux transformation operator and its
inverse in terms of continuous basis sets is obtained. In section 4, different systems of CS
for the multisoliton potentials are introduced. It is established that the resolution of the unity
exists in every case. Explicit expressions for the measures that realize this equality are found.
In the conclusion some possible applications of the obtained results are outlined.

2. Free-particle coherent states

In this section | give a brief overview of the well known properties of the Hilbert space of the
states of the free particle (see [25] and references therein) and the corresponding CS [2] we
need for subsequent analysis.

Annihilationa and creatiom:™ operators

a=(—1)03 +ix/2 at=({+1)d, —ix/2

form the Heisenberg—Weil subalgebra of the six-dimensional &lihger algebra which

is a symmetry algebra of the Sélinger equation with the zero potential. Solutions of
the free-particle Sckidinger equation which are square integrable over the full real axis
R = (—o0, +00) with respect to the Lebesgue measure are the eigenstates of the symmetry
operatorKg = aa* +a*a, Koy, (x, 1) = (2n + D)y, (x, t). The explicit expression for these
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functions is as follows:

VUn(x, 1) = (=)' (n12"V/27) Y21 +ir) Y2 exp[—in arctary + y2(it — 1)/2]H,(y)
X

Vol
Operatorsz anda* are the ladder operators for the basis functigns av, = /nv,_1,
a*y, = v/n+ L, andayg = 0.

Let us denote by, the lineal of the functiong,, n = 0, 1, ... which is the space of all
finite linear combinations of the functionss, with complex coefficients. The operaterand
a”*, being linear, are defined for all elements fraljmand £y is invariant with respect to the
action of these operators. Since the momentum opepater —id, and the initial Hamiltonian
ho are expressed in terms @fanda*: p, = —(a +a*)/2, hg = p?, these operators are well
defined inLy and map this space into itself.

The Hilbert space of the states of the free partiéleis defined as a closure of the lingay
with respect to the measure generated by the inner prédupt,), v..» € Lo, which as usual
is defined with the help of the Lebesgue integral. The functign®rm an orthonormal basis
in H, (V,|vr) = 8, Itis well known [26, 27] that the operatops andhg initially defined
on Ly have unique self-adjoint extensions and, consequently, are essentially self-adjoint in
H. The spectrum ofg and p, is purely continuous. They have common eigenfunctions
Y, = Yp(x, 1) pu¥, = p¥y,, ho¥r, = p?¥,, p € R, which do not belong ta but
belong to a wider spacH_ of the linear functionals oveH,, H. ¢ H C H_ (the so-called
Gel'fand triplet). One can choose the Hilbert—Schmidt equipment of the didneletting
H. = K,'H, sinceK, " is a Hilbert-Schmidt operator. We refer the reader to [28-30] for
more details on rigged Hilbert spaces. The explicit expression for the funatiphs ¢) is
well known: ¥, (x, 1) = (2r)~Y2 exp(—ipx — ip%).

The functionsy,, form an orthonormal and complete (in the sense of generalized functions)
basis inH, (y,|¥,) = 8(p — ¢). The completeness condition is expressed symbolically in
terms of the projectors onto these functions

f dp 1V, (Wl = L %)

I do not indicate the limits of integration along the whole real axis. This equality should be
understood in a weak sense. This means that it is equivalent to

/dp (Wil¥p) (Ypli) = 8ji Jk=0,1,...

wherey,, k =0, 1, ... are orthonormal basis functions in the spate
The free-particle CS may be obtained by applying a displacement operator in the
Heisenberg—Weil group to the vacuum vecfor

V. (x, 1) = expza® — za)vo(x, 1) ze€C.

These vectors are also the eigenvectors of the annihilation opengtce zy,. The vectors
¥, € H belong to a wider set thafly. Their Fourier decomposition in terms of the bagijs
has the form

\[/z = Zn anZ"lﬁn
O = d(z,7) = exp(—zz/2) 3)

a, = (n"H)~Y? zeC.
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The vectors), (x, t) satisfy all the properties enumerated in the introduction. In particular, the
measure d = du(z, 7) used in relation (1) is well known: d= dxdy/7,z = x +iy and

the domain of integratio® is the whole complex plang€. In what follows | will not indicate

the domain of integration in the integrals over the measures. The integration will always be
extended over the whole complex plane. To conclude this section | write down the explicit
expression for the free-particle CS

_ L _ (x + 2iz)%(it — 1)

(x, 1) = o) YA +in) VPexp =Lz +7)%+ —

Yo (x, 1) = 2m)" (1 +1ir) pl—3(z+2) a1+19)
| use the notationx as the spatial coordinate and as the real part of a complex number

z. | hope that it will not cause confusion since these quantities will never appear in the same

formula.

3. Darboux transformations and isometric operators

In this section the Darboux transformation operdtds analysed as an operator defined in the
Hilbert spaceH . | would like to stress that this operator is unbounded and cannot be defined
over the whole spac#. It has a domain of definition which is a subsettf Moreover, its
domain of values does not coincide with Therefore, this operator cannot realize mapping
between Hilbert spaces contrary to the published assertion [31].

To obtain anN-soliton potential we use the Darboux transformation operator approach
elaborated in detail in [10]. The action of this operator on a sufficiently smooth function is
defined by the formula

Ly =W ug, ..., up)Wua, ..., uy, %)

where W stands for the usual symbol of a Wronskian. In our case the initial poténgial
does not depend on time. Therefore the functiops= u;(x, t) which are solutions of

the initial Schddinger equation, may be chosen as eigenfunctions of the initial Hamiltonian,
houy = ouy, and in general, are not supposed to satisfy any boundary conditions. In this case
the transformation operatdr does not depend on time and transforms solutions of the initial
Schibdinger equation into solutions of the Sétlinger equation with the new time-independent
potential

Vi=Vo—202logW(uy, ..., uy).

In this paper we need not use the time-dependent Darboux transformation which was proposed
by Matveev and Salle (see [10]) and advanced by Bagrov and Samsonov [32].

To obtain theN-soliton potential one should takg = 0 and specify the transformation
functionsu, as follows [10]:

uzr—1 = COSHag_1x + by_1)

ug, = Sinh(agx + by)

houy = —atuy k=12...,N
ar<dy<---<day.

The time-dependent phase factors are omitted from these functions since they do not affect
all the results. In general, the Wronsky determinant cont&ihsummands. | would like to
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stress that in the special case of the soliton potentials this determinant may be substantially
simplified and presented as a sum 8f2 hyperbolic cosines [33]

vt N N
1-N
Wy, ...,uy) =2 Z £284...8p H(sja_,- —Sia,‘)COSP{ZSI((IIX'FbI)}
(€1,.-,EN) Jj>i =1

wheres; = %1, the value of the subscriptate, should be taken equal #¥ for evenN and
to N — 1 for odd N, the summation runs over all ordered and non-identical(sgfs. ., en)
(the setqey, ..., ey) and(—ey, ..., —ey) are declared to be identical).

It can be shown [10] that the potential thus obtained is regular and bounded from below.
This implies that the Hamiltoniah; = —a2 + V; is essentially self-adjoint if. It has a
mixed spectrum. The position of the discrete spectrum levels is defined by the values of the
parameters;: E; = —a?, and corresponding eigenfunctions have the form [34]

o= NW®O g, .o uy)/Wug, ..., uy)

N 1/2
Nk = (%dk l_[ |a,§ - Cl12|>

J=1(j#k)
hlwkz—a,fwk k=1,...,N

whereW® (uy, ..., uy) is the Wronskian of the functions, . . ., uy except for the function
ux and the factolN, is introduced to ensure the normalization of the functigngei e ;) = ;.
k,j=1,..., N. The continuous spectrum corresponds to the semiaxis0. Continuous
spectrum eigenfunctiong,, = ¢,(x, t), p € R of the Hamiltoniarm:; may be obtained with
the aid of the operatat: ¢, = N, *Ly,, where the facton,* > 0 defined by the relation
N2 = (p®+d?)...(p* +a}) is introduced to ensure the normalization of the functipps
(pplog) = 8(p — q), hip, = pp,. The seflp;, j =1,...,N; ¢,, p € R}is complete in
H.

Since the operatdt is linear, the relatio vy, = N,¢, defines the action of this operator
on everyyr of the form

1) = /c<p>wp<x,r) dp @)

whereC (p) is a finite continuous function ovék. The set of functions of the form (4) is a
linear space that | shall denote By, and it is dense itif. (More precisely, it is dense iH_
since these are functionals.) Hence, the action of the opetatodefined for each element
from Lo,. The image of the spaady,, that | shall denote by, consists of the functions

@(x, 1) =fC(p)Np¢p(x,t)dp-
The Darboux transformation operatdr together with its Laplace adjoint.* has
remarkable factorization properties [34, 35],
go=L"L=(ho+d)...(ho+a}) (5)
g1=LLY = (h1+d?) ... (h1+ad?). (6)
The functiongy,, are eigenfunctions gf, goy, = Ngl//p. This implies that the functions
¢, are eigenfunctions of the operatar, g1¢, = N,pr. The discrete spectrum eigenfunctions

of the operato, ¢, k = 1,..., N belong to the kernel of the operater, gipx = O,
k = 1,..., N. This means that the operatgt is non-negative ind. Therefore, consider
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the orthogonal decomposition of the spafe H = Hy & H, whereHy is anN-dimensional
space with the basig,, k = 1, ..., N. The functionsp,, p € R form a basis (in the sense of
generalized functions) iff;. In what follows | shall not consider the spalig and restrict my
consideration to the spaé# only. As the operatork, andg; are restricted to this space, they
have a pure continuous spectrum and the opegaisrstrictly positive. | use the same notations
for these operators as operators actingl/in Taking into account the spectral decomposition
of these operators

hy = / dp p?le,) (@,

g1= / dp N2lg,) (e,

one can specify their domains of definition. For the operaidt consists of alky € H; for
which the integral

||h1<p||2=/dpp4|<cp|¢p>|2

converges, while for the operatgr one should demand the convergence of the integral

lgrell? = / dp Nl(ple,)I%

It is clear that the operatgy: is defined only, and maps this space into itself. Using
this fact and the factorization property (6) one can define the action of the opéfator
the functionsp,, L*¢, = N, *L*Ly, = N,v,, and extend this operator by linearity on the
whole spacet,,.

It is not difficult to see that the following equality:

<pr|(pq> = (¢p|L+(Pq>

holds for ally, € Lo, andg, € L1,. Nevertheless, this does not mean thais an operator
adjoint with respect to the inner product g for which the domain of definition i£o,. To
find such an operator one has to specify correctly its domain of definition. | shall not look
for this domain. Instead | shall give a closed extendioof the operatot. and then find its
adjoint L*.

Once we know the bases, andg, in H andHy, respectively, we can consider isometric
operators

U= fdp|¢p><w17|

U=y =/dp|wp><¢p|.

Similar operators have been introduced by Faddeev [23] and considered by Pursey [24] for
purely discrete bases. These operators are bounded and defined for all elemet{sanaim
H,, respectively.

Consider now the following operators:

L= [ do i, @)

L+=/dep|wp><§0p|~ (8)
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It is not difficult to specify their domains of definition. For this purpose | use the spectral
decomposition of the operat@g and its square root

g0 = /dp N21y,) (]
9)
8/° /de 1) (W l.

It then follows that

1Ly 112 = llgg “wI? = /dp N2\ (Y1, 12

This means that the domain of definition bfcoincides with that ofgl/z and consists of all
Y € H such that the integral in the right-hand side of this equation converges. The domain of
definition of L* coincides with that of the operatgf/z. It is worthwhile to mention that these
domains may be described in terms of conditions imposed on functions that are comprised in
these domains (see, for example, [36]) sihg@andh are operators bounded from below and
essentially self-adjoint.

It is clear from formulae (7) and (8) that the operaidrls adjoint toL with respect to
the inner product and the domains of definitionloand L* are well specified. Moreover,
L** = L. This implies [26, 27] that the operatdris closed. Formulae (7) and (8) give a
quasispectral representation of the closed operaitmndZ*

It follows from formulae (7) and (8) thaty, = Ly, = N,g, andL*p, = L*g, =

N,V¥,. This means that is a closed extension of the operatoandL* is a similar extension of

the operato * when the domaing,, and£,, are taken as their initial domains of definition.

From the spectral decomposition of the operagé@ 9) andgl/2

g’ / dp N,lop) (@,]

one obtains the following representations foand L*:

1/2 1/2 1/2

L=Ug/ =g'U LY =g U* U+g1/2

Such representations are known aspb&ar decompositionsr canonical representationsf
closed operators (see, for example, [27, 37]).

The action of the operat@r on the basig, gives an orthonormal basis i#y: ¢, = U,
(Zul2x) = 8ui. The functionsp, = g1/%¢, = Ly, = L, hence, form a basis i equivalent
to an orthonormal (so-called Riesz basis, see, for example, [38]). The opEratoion-local
and rather complicated. Therefore, there is no way in which simple explicit expressions can
be derived for the functions,. The functionsy, (x, ) = Ly, (x, t) are much simpler but
they are not orthogonal to each othég;, |¢r) = S,c. | shall denote bys the infinite matrix
with entriesS, ;. The elements of this matrix can easily be expressed in terms of the elements
of another matrixs®(a) with the entriess k(a) (Yulho + a?|¥). Using the factorization
property (5) one can write

Sk = [$%(a1)$%(a2) ... S%an)]

Taking into account thakg is expressed in terms of the ladder operato@nda* for the
basis functionsbn, ho = (a +a*)?, one derives the non-zero elements of the maifix):

nn(a) =n/2 + +a? ,?n+2(a) = %«/(n +1)(n +2). Hence, we see that the number of
non-zero elements in each row and column of the matisfinite.
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Consider now bounded operators

MZ/dPNp_le)(l/fﬂ

M* = /dp N H,) ()]

defined inH and Hy, respectively. It is not difficult to see thaf L* is the unit operator in
Hy andM™* L is the unit operator irff. Using the spectral resolutions of the operag{ré/z

andg; 2,

g0 /% = /dp Ny M) (|

g 2= /dp Ny Y ep) (@]

one derives the polar decompositions of the operatbend M *:
M= Uggl/z _ gl—l/zU
Mt = go—1/2U+ _ U+g1_1/2.

It is easily seen that these operators factorize the operators invexsandg,: M*M = ggl,
MM* =gt

The functionsn, = g; /¢, = My, form another basis inH; equivalent to an
orthonormal. This basis is biorthogonalgdg, (¢,|n:) = .. From this relation and from the
factorization property for the operatgg ! follows the representation for the elemeﬂ,]}1 of
the matrix inverse td,

S = (alme) = (Walgg )

= [ a2 v

As a final remark of this section | would like to note the following. The spHgean
be obtained as a closure of the lingal of all finite linear combinations of the functions
v, = L, with respect to the norm generated by the inner product which is a restriction of
the given inner product il to the linealZ;. The set of functions of the forma = Ly when
¥ runs through the whole domain of definition of the operatofi.e. the domainD g of
definition of the operatoy/go) cannot give the whole spadé,. Nevertheless, if one defines
a new inner product iy, (@4 lgs)1 = (LVa|LYp) = (Valgol V), Yab € Lo, ¢ap € L1 then
the closure ofZ; with respect to the norm generated by this inner product coincides with the
sety = Ly, ¥ € D sg. This space is embedded Hy.

4. Coherent states of soliton potentials

The operatog is a symmetry operator for the free-particle Siinger equation. Therefore,

it commutes with the Schdinger operatord, — ko when applied to the solutions of the
Schiddinger equation. It follows that the operai@gr = iggl/z is an intertwining operator
for the Schédinger operator#/ (id, — hg) = (i9, — h1)U and therefore it is a transformation
operator. Hence, being applied to a solution of the initial 8dimger equation (in our case this

is the free-particle Scdinger equation) it gives a solution of the transformed equation (in our
case this is the Scbdinger equation with th&/-soliton potential). The functions, = U,
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and¢, = U, are then solutions of the Sdldinger equation with thév-soliton potential.
The Fourier decomposition of the functignin terms of the basi§;, } has the same form as
that of the functiony, in terms of{y,}

=@ ZanCn-

The vectorss;, z € C satisfy all the conditions formulated for CS in the introduction
because of the isometric nature of the operdfor The resolution of the unity (1) in the
spaceH; in terms of the projectors of takes place with the same measured dx dy/,

z = x +iy. One of the deficiencies of these coherent states is that a simple explicit expression
for the functionsz, (x, ) does not exist. We may correct this deficiency by introducing new
coherent states. Letus actthe symmetry opeﬁf&on the vectorg,. As aresult one obtains
other solutions of the Scdinger equation with thé&/-soliton potential

1/2 =
¢ = 81/ t,=Ly, =0 Zn ay®n.

It is not difficult to see that the valug),|golv,) is finite. This means thay, belongs to
the domain of definition of the operatérand the above equality has a meaning. Moreover,
these functions are sufficiently smooth and one can apply the differential opgratothem
directly. Thus, one obtains a coordinate representatian.oFor instance, in the case of the
one-soliton potential this representation reads

g(x, 1) = —3(2m) YA +it)"3?[x + 2iz + 2a(1 + it) tanh(ax)]
(x + 2iz)?
4 + 4ir

The parameteb is not important for the one-soliton potential and weiset 0. We see that
these functions are much simpler thamnd may be analysed without difficulty. For example,
it is easily seen that [15}. (x, 1)|?> = |¢.(—x, —t)|2. This property reflects the transparent
nature of the one-soliton potential.

Another system of states may be obtained with the help of the transformation ogérator
Consider the vectors

-1/2
n: =81 / Z=sz=q>2,1annn‘

The operatoM, being inverse td., has an integral nature. For the case of the one-soliton
potential the integration may be carried out analytically [15]. This yields

n.(x,1) = —L—lli\/E(Zn)_l/4 sechax) exq—é—ll(z +72)2+a’(1+ it)]

X [exp(Ziaz) erfc(aVl +ir + /2 iz)

x exp[— — 3@+ Z)Z:|. (10)

V1+it
. _ x/2+iz
— exp(—2iaz) erfc(ax/l +it — e )} (11)

where the parameteris taken to be zero.

Itis worthwhile to mention that all the statgs(x, ), ¢, (x, 1), n,(x, t) and¢, (x, t) cannot
represent non-spreading in time wavepackets. Nevertheless, one can interpretthem as coherent
states since they satisfy all the properties of such states enumerated in the introduction. Now |
shall show that for the vectogs andn, there exist measures, = u,(z, 7) andu, = p,(z, 2)
that realize the resolution of the unity i in terms of the projectors on these vectors.
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First consider another continuous basisHf: n, = N,Mv,, (n,ln,) = 8(p — q),
p,q € R. Since{p,} and{n,} are bases ifl;, the resolutions of the unity of the type (1) in
terms of the vectors, andy, are equivalent to the equations

fdun(z,i) Mo} (m:1ng) = 8(p — @)

f Ay (2. 2) (0, 10:) (@:l0g) = 5(p — ).

Taking into account that the functiogis, are the eigenfunctions gb andggl, govp = N‘fzp,,,
g, = N,%y,, one arrives at equations for the measurgsndy,

(Nqu)_l/dMn (Upl¥) (Wl¥rg) = 8(p — q) 12)

Ny N / Aieg (W lY) (Y l¥g) = 8(p — q). (13)

Note that the integrals involved in these equations are time independent and hence can be
calculated at = 0. Therefore, in what follows | let = 0 and look for the measures
independent of time.

The momentum representation of the €Sis well known

Wplyz) = 2/m) 0y, (2)
Klfp(Z)=EXp(—p2+22p—z2/2) z=x+iy.

Let us look for the measune, in the form du,, = w,(x) dx dy, z = x +iy. After performing
the integration with respect toin equation (12) one arrives at an equationdgtx),

(271)1/2/dxa),7(x) F,(x) = N2 exp2p?)

F,(x) = exp4px — 2x?).
The functionNﬁ is known to be a polynomial ip. Then one concludes thaf,(x) is a

polynomial inx whose coefficients are uniquely defined by the coefficients of the polynomial
Nﬁ. For instance, for the one-soliton potential one can find

wy(x) = (x2 +a®— ;11)/71.

This proves that the statgs may be interpreted as CS.

We note that the stateg are defined with the help of the bounded operggdfz. This is
the reason why the measyrg is expressed in terms of ordinary (non-generalized) functions.
Another case takes place for the statewhich are defined by the semibounded opergi()?r.
I shall now show that the measuug is expressed in terms of generalized functions.

Let us look for the measurg,, in the form dv, = dydw,(x). The integration in
equation (13) with respect tpleads to an equation for the measus, t),

(2n)Y? / do, (x) F,(x) = N, exp2p?). (14)

First we note thatF,(x +iy)| < exp(—dx? + by?) where 2< d < b. This means that
F,(x) belongs to a subspace of the spaé:/é of entire functionsF such that F (x +iy)| <
exp(—dx?+by?),0< d < b[29]. We look forw, as a functional (i.e. a generalized function)

overSi//s. (We will see that really this is a functional over a subsp?ajlléé - Si//g.)
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As is known [29], positive-definite functionals (we look for just such a functional) over

Si//g are specified by their Fourier transforms. Lgtbe the Fourier transform of the measure

w,(x). This means that an integration of a functibix) Si//zz with respect to the measure

w,(x) should be replaced by the integration of the Fourier transiom of this function with
respect to the measudg,. In particular,

/ dw, (x) F,(x) = / da, (1) Fp (1) (15)

whereﬁp (7) is the Fourier image of the functiaf, (x) which in our case can easily be found
F,(t) = /m/2exp2p? +ipt — 1?/8).

As a result equation (14) yields an equationdgi(t)
w / dad, (1) exp(—1%/8 +ipt) = N, 2.

It is an easy exercise to show tl@g(r) may be expressed in terms of elementary functions.
For this purpose we look fob, (¢) in the form do, (1) = p,(¢)dt and use the following
representation for the functidlvlljz:

N-2 XN: Ak 2
= T = p
g =Tt ag (16)
O (CLYC M
After some algebra one obtains a formula fQ«?)
_ Ny Ak 2
Py (t) = (277) ELﬁZemww—mm. (17)

Note that for the functiom, (¢) of the form (17) there exist iSi//g functionsF'(p) such

that the integral in the right-hand side of equation (15) diverges. The convergence condition
for this integral imposes a restriction on the decrease of the integrand furfotionin the
left-hand side of equation (15) as] — oo. This function should satisfy an inequality
|F(x)| > exp(—2x?— Ax) whereA is a non-negative constant for every functiéx) < Sy/5.

| denote the set of functions satisfying this conditioniﬂé (C Sll//f) which obviously is a

linear space.
Thus, we have found the measurg in terms of the generalized functies, (x) over the

spacesy/s, di, = dy do, (x), z = x +iy which is defined by its Fourier transforé,. The
integrals with respect to this measure should be calculated as follows:

/mum%wmmE/wmme>
whereF,,(¢) is the Fourier transform of the function

Fap(x) =/dy (@al@z) (@ l0p) z=x+iy.

To conclude | would like to comment on the calculation of the norms of the functipns
andg,. The square of the norm @f may be calculated with the aid of formula (16) for the
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function N2 and the factorization property of the opera@gr1 in terms of the operator&l
andMm*

lelne) = (Wlgg 1) = / dp N2/ 1) 2
After some algebra one obtains
N .
(nelnz) =" AcF z=x+ly

A2
Fi = Y exp[2a? — x%)] Re[expdiax) erfo(av/2 +iv/2x)].
ag
Similarly, the square of the norm of the functigncoincides with the expectation value

of the operatorg in the statey,,. For instance, for the one-soliton potential one obtains

(p:loz) = (Ylgolvy:) = § +a® +x%, 2 = x +iy.

5. Conclusion

A classical particle which is decayed by a potential well of an arbitrary shape moves without
reflection. For a quantum particle, in general, this is not the case. Nevertheless, there exists
a wide class of potentials called transparent potentials for which the scattering process of
the quantum particle comes about in some sense in a similar way to those of the classical
particle, i.e. without reflection. In my opinion this mysterious phenomenon has, up to now,
no appropriate explanation. From a practical point of view the answer to this question is
rather important. If at the quantum level we were able to force a signal to propagate without
reflection we could decrease the output of the emitted signal. All transparent potentials known
at present have a remarkable property. They are related to the zero potential (free particle)
by Darboux transformations. Up to recent times it was believed that such potentials have a
finite number of discrete spectrum levels. Nevertheless, a method based on an infinite chain
of Darboux transformations has been proposed recently [39], with the help of which one can
create transparent potentials with an infinite number of discrete spectrum levels. To better
understand the nature of transparent potentials we should investigate them in detail. Up to
now only scattering states have been available for an analysis of the properties of a quantum
particle moving in a soliton potential. This paper opens the door to a more detailed analysis
since we now have simple exact solutions of the corresponding&iciger equation which

are square integrable (see formulae (10) and (11)). These results might find applications in
signal analysis (see, e.g., [40]) and in quantum optics [3].

As is well known quantum theory gives a more detailed description of nature than the
classical theory. Therefore, a one-to-one correspondence between classical and quantum
systems does not exist. This, in particular, is expressed in the fact that the quantization
procedure is not unique (canonical quantization, geometric quantization, etc). In this respect
the following questions are of interest. What are common points (or differences) between
two classical systems for which quantum counterparts are related to each other by the
Darboux transformation? Whether the distinction between two classical systems for which a
quantization gives quantum systems interrelated by the Darboux transformation is essential?
In particular, what are the common points between the classical free particle and a particle
moving in a transparent potential? The CS approach make it possible to formulate clear stepsin
the direction of obtaining an answer to these questions. It permits one to construct a classical
mechanics counterpart of a given quantum system and to analyse the properties of such a
system. This approach has been realized recently for the potential of thexforngx—2
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[22]. It was established that at a classical level the Darboux transformation consists of a
distortion of the phase space of the classical system. Moreover, this distortion is consistent
with the transformation of the Hamilton function in such a way that the equations of motion
remain unchanged. Up to now no approach for the analysis of CS of transparent potentials has
been elaborated. In this paper | show that the Darboux transformation operator approach may
be used to investigate properties of a subclass of transparent potentials, namely, multisoliton
potentials. A next step would be the investigation of other types of transparent potentials and
the analysis of the classical counterpart of the quantum system that moves in such a potential.
We are planning to carry out these investigations in the near future.

The existence of the resolution of the unity (1) for the states (10) and (11) established in
this paper makes it possible to construct a holomorphic representation for the Hilbert space of
the states of a particle moving in a soliton potential and for operators acting in it. This gives
the possibility to use the well elaborated methods of analytic function theory (see, e.g., [41])
to analyse the properties of soliton potentials. In this approach a number of statements are
easier to prove and new properties may be established [42]. Another important consequence
of the existence of the resolution of the unity is the possibility to construct a so-called ‘phase-
space formulation of quantum mechanics’ (for a review see [43]) for the particle moving in
the soliton potential. Such a formulation is a basis for the reconstruction of a quantum state
from information obtained by a set of measurements performed on an ensemble of identically
prepared systems which is now an actual problem.
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